LIMITS [1.8] & CONTINUITY [1.7]

NON-TECHNICAL DEFINITION OF A LIMIT (Math 124):

We define the limit of the function \(f(x) \) as \(x \) approaches \(c \), written \(\lim_{x \to c} f(x) \), to be a number \(L \) (if one exists) such that \(f(x) \) is as close to \(L \) as we want whenever \(x \) is sufficiently close to \(c \) (but \(x \neq c \)). If \(L \) exists, we write \(\lim_{x \to c} f(x) = L \).

Example 1: Explain why \(\lim_{x \to 0} \left(\frac{1}{x^2} \right) \) does not exist.

As \(x \) approaches zero, \(\frac{1}{x^2} \) becomes arbitrarily large, so it cannot approach any finite number \(L \).

Therefore we say \(\frac{1}{x^2} \) has no limit as \(x \to 0 \) and we write: \(\lim_{x \to 0} \left(\frac{1}{x^2} \right) \) DNE where \(DNE \equiv \) Does Not Exist.

If, however, \(\lim_{x \to c} f(x) \) does not exist because \(f(x) \) gets arbitrarily large on both sides of \(c \), we also say \(\lim_{x \to c} f(x) = \infty \).

Since \(\frac{1}{x^2} \to \infty \) as \(x \to 0^+ \) and \(\frac{1}{x^2} \to \infty \) as \(x \to 0^- \), we also write \(\lim_{x \to 0} \left(\frac{1}{x^2} \right) = \infty \).

DEFINITION OF CONTINUITY

The function \(f \) is continuous at \(x = c \) if the following principles hold:

1) \(f \) is defined at \(x = c \), that is \((c, f(c)) \) is a point on the graph of \(f \).

2) \(a \) \(\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) \)

\([b] \) \(\lim_{x \to c} f(x) = f(c) \)

Example 2: Let \(g(x) = \begin{cases} (x + 1)^2 & \text{if } x \leq 1 \\ x & \text{if } x > 1 \end{cases} \) Is \(g(x) \) continuous at \(x = 1 \)?

Example 3: Let \(h(z) = \frac{5z^2 + 2}{z^2 + 1} \) Is \(h(z) \) continuous at \(z = 3 \)?